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ABSTRACT

The analysis of stresses induced by contact between two bodies is inherently difficult
because the size of the contact zone is unknown and constantlv changing throughout
loading. To overcome these difficulties, two approximation methods have been devel-
oped to determune the magnitude of contact stresses using the Ravleigh-Ritz method and
the finite element method. Numerical optimization methods are emploved to solve the
contact problem. The solution techniques are compared to known analyvtical solutions
and shown to vield accurate results. An application of this approach to solving the
contact problem is illustrated by examining the response of a clumped sandwich com-
posite beam to low velocity impact. It was found that the maximum shear stress is in-
sensitive to lamina thickness, however an increase in the contact laver thickness resulted
in a reduction in interfacial shear stress. In addition, it was noted that a nonlinear
bending stress distribution in the contact layver intensified as the thickness of this laver
increased. This phenomenon was found to be localized to the region of contact. Finally,
it was found that the compressive transverse normal stresses increased as the thickness

of the contact lamina increased.
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I. INTRODUCTION

A. MOTIVATION

Contact stresses occur when two bodies exert forces over limited contact regions.
Examples of contact stress include meshing gear teeth, cam shaft and pushrod contact.
rollers in plate forming operations, roller and ball bearings in contact with races, shaft
and journal bearing contact. and plate-pin connections.

Contact zones can be point, line, or surface in geometryv. Because of the limited
contact zone, the local stresses can be sufficiently high to be of major concern to the
designer. Consequently, a thorough understanding of this phenomenon is essential. The
first successful analytical solution to the contact problem between two spheres was
solved in the late 19th century by Hertz. His solution can only be applied to simple
geometries such as spheres. cvlinders, and flat plates. Because of these limitations. al-
ternate solution techniques were needed to accommodate more complex geometries and
boundary conditions.

Unfortunately, the contact problem is difficult to study. The most significant diffi-
culty is that the size of the contact zone is unknown and constantly changing throughout
loading. Solutions are obtained by an iterative process. Consequently, the problem is
highly nonlinear in its behavior. [t is because of these difficulties that approximation
and numerical methods are preferred in the solution of the contact problem. There are
two gencral approaches used in the approximate techniques to solve the contact prob-
lem. One class applies specific iterative procedures to solve a nonlinear svstem of
equations that represent the contact state. For example, the contact condition can be
simulated by the introduction of additional coupling terms into the syvstem of equations.
The other class constructs a functional that includes the contact body constraint. The
functional is then munimized using specific numerical programming techniques. Al-
though these two classes use different procedures, there are several methods to incor-
porate the contact condition into the problem formulation that are common to both
classes. Examples of these include the penalty method and the augmented Lagrange
multiplier method. These methods specify the manner in which the contact boundarv
conditions are treated.

The objective of this study has two parts. First, two approximate solution tech-

niques will be developed to obtain the solution of the general contact problem. These




techniques belong to the general class of methods that calculate a specific functional and
then applies numerical programming methods to solve the contact problem. Second.
these solution techniques will be venified by comparison with known analyvtical solutions.
With the solution techniques verified, the methods will be applied to study an actual
contact problem.

In order to accomplish the first objective, two models will be developed. The first
method utilizes the Ravleigh-Ritz method to solve the contact problem. An assumed
Jdeformation field that satisfies the boundary conditions 1s carefullv selected. Theory of
elasticity relationships are applied to obtain an expression for the syvstem'’s strain energy
enabling calculation of the total potential. The minimization of the total potential en-
ergv enables the calculation of the contact stresses at any point in the bodyv. The second
model developed uses finite element analyvsis to accomplish the same objectives. The
numerical minimization technique used in both cases is the augmented Lagrange mult-
plier method.

To accomplish the second objective, both methods will be verified by comparison
with the Hertz solution of an infinitely long cvlinder in contact with a flat plane. With
verification completed. the contact stresses resulting from low velocity impact between

objects and composite sandwich materials will be studied.

B. LITERATURE SURVEY

As discussed previously, there are two general approaches to solving the contact
problem. One approach uses special procedures to solve a nonlinear system of
equations. The other creates a functional that includes the contact boundary con-
straints.  Although different, both approaches use similar mathematical methods to in-
corporate the contact condition into the problem formulation. Two of these mcthods
are the Lagrange method and the penalty method. A detailed explanation of the method
of emploving the Lagrange method in nonlinear finite element analysis was discussed by
Pian [Ref. 1]. Alternately, the penalty finite element method was used by Cheng [Ref.
2] to solve the multibody contact problem. The fundamental concept of the latter ap-
proach is the transformation of a constrained problem into an unconstrained one. This
is done by penalizing (i.e., increasing) the objective function for constraint violations.
Although both methods are effective, there is substantial discussion on the limitations
of both methods. Nour-Omid [Ref. 3] described the positive and negative aspects of
both methods. The Lagrange method has been shown to be the more accurate method.

However, its usage requires the introduction of additional unknowns thus increasing the

to




system’s degrees-of-freedom and computational time. The penaltv method does not re-
quire additional computational time, but it has been shown to result in less accurate
solutions in satisfying the contact boundary conditions. Since the contact boundarv
conditions are exactly satisfied only when the penalty term goes to infinity, the correct
choice of the penalty parameter is the kev to an acceptable solution. Guerra [Ref. 4]
supported these claims.

Because of the limitations of the Lagrange and penalty methods, BishofT [Ref. 3]
advocated the use of the augmented Lagrange muluplier method to solve finite element
contact problems. This method is favorable since 1t avoids the limitauons of both
methods discussed above. The augmented Lagrange multiplier method is similar to the
penalty method in that the objective function s penalized for constraint violations.
However. an additional multiplier term 1s added so the optimum can be achieved by a
combination of both terms. As stated by Vanderplaats [Ref. 6: p. 141], the advantage
of this method is that the penalty term 1s not required to grow to infinitv to achieve exact
constraint satsfaction.

The augmented [agrange multiplier method can be used in numerical programming
techniques to find the opumum of anv functional. Pierre and Lowe [Ref. 7] provide a
detailed analvsis of the programming techniques necessary in applving this method.
Additionally, Vanderplaats [Ref. 6: pp. 140-147] provided an excellent discussion on the
practical usage of this method in numencal techniques. Rothert et al. [Ref. 8] used a
numerical programming code based on this method to solve a nonlinear contact prob-
lem. In this study. an existing numerical optimization routine utilizing the augmented
[.agrange multiplier method will be used as an integral part of two solution methods
developed to solve the contact problem. These methods will use different techniques to
obtain the same functional. The augmented Lagrange multiplier method will then be
used in a similar fashion to solve each problem. In each case, the optimization routine
will be used to determine a set of design variables that describes the contact state.

Following the development and verification of the numerical procedures, this study
will investigate the response of composite sandwich materials to low velocity impact.
One of the common failure mode of low velocity impact is delamination. Joshi and Sun
[Ref. 9] studied the impact response of a three laver cross-ply graphite epoxy luminate.
A correlation was obtained between delamination cracks initiated experimentally and
maximum shear stress points determined numerically. Sun and Rechak [Ref. 10] fol-
lowed up these findings and found that the introduction of adhesive lavers between

laminae reduced the shear stress distribution thus reducing delamination. Chor, Wang,




and Chang [Ref. 11] studied the cffects of laminae orientation, ply thickness, and
stacking sequence on impact damage of graphite epoxy composites. It was determined
that stacking sequence affects impact damage more than laminae thickness variations.
Much of the previous work has focused on the behavior of the graphite epoxy laminate.
However, there is currently interest in the development of turbine blades constructed of
sandwich composites. It is therefore beneficial to investigate the response of composite

sandwich materials to low velocity impact.




[I. FORMULATION OF THE CONTACT PROBLEM

A. PRINCIPLE OF MINIMUNM TOTAL POTENTIAL ENERGY

As discussed in the introduction, the limited utility of the analvtical solutions ne-
cessitated the development of solution techniques capable of handling the nonlinear be-
havior of the contact problem with complicated geometry and complex boundarv
conditions. This study intends to develop two numerical procedures to solve the contact
problem. In short, the procedures will use different methods to obtain a tunctional. the
svstem's total potential energy, and then use similar methods to obtain the equilibrium
condition. Determination of the equilibrium position 1s made by application of the
principle of minimum potential energy. With equilibrium established. conta.t stresses
can be quantified. In order to understand the details of this approach. the principle of
virtual work and the principle of minimum potential energy must be discussed.

Given a body in equilibrium. 1t is desired to describe the response of that body to
infinitesimal displacements resulting from a svstem of forces. If each parucle in the body
1s described bv some generalized coordinates, then the work resulting from these
infinitestmal displaceraents is simply the product of the generalized forces acting on each
particle and the particle’s displacement. However, if the particle 1s in equilibrium, the
work must be zero since the summation of forces in the X, v, and z directions is zcro.
The infinitesimal displacements and work in this example are referred to as virtual in
nature. The fact that this work vanishes is referred to as the principle of virtual work.

The virtual work discussed thus far can be subcategorized as virtual strain energy
and virtual work done by external forces. From the definition of strain energy, virtual
strain energy, 4L, that results from virtual displacements can be calculated. Since this
energy is viewed as energy against the bonds between elements, L is a negative quan-
titv. The work done by external forces is designated 64 and is simply the summation
of the product of the external forces and the displacements of the generalized coordi-
nates.

Since the principle of virtual work states that the work done as a result of virtual

displacements is zero,

oW —-9oU=0




Alternately, this can be expressed as,
M=ol -H)=0

where IT represents the system’s total potential.

The above equation illustrates the condition of minimum total potential of a svstem.
This 1s the foundation of the principle of minimum potential energyv. [Ref. 12: pp.
330-331] This principle states that in a condition of stable equilibrium. the svstem’s
total potential is stationary. Hence, determination of a system’s total potential energy
and the minimization of that quantity will enable the calculation of the equilibrium po-

sition. This is the basis for the numerical techniques developed in this study.

B. CONTACT PROBLEM DESCRIPTION

The objective of the solution techniques to be developed is to obtain a means of
calculating the total potential energy and minimize it to determine the equilibrium con-
dition. To accomplish this, two different models will be created to first solve a simple
1sotropic case, the solution of which is known. In this manner, our models can be vali-
dated for use in more complicated arrangements.

Consider contact between a cylinder and an infinite plane as shown in Figure 1. A
cross section of the contact zone is shown in Figure 2. Let the width of the contact zone
equal a distance of 2a. An analytical solution of this problem is available as a result of
the work done by Hertz. In developing the solution methods, only a very limuted region
adjacent to the contact zone will be examined. The reason for this is that the contact
phenomenon is a very local one. Figure 3 represents the analytical solution of the
normal stresses resulting from 'this contact problem. [Ref. 13] As shown, the stresses
in the foundation diminish very rapidly. The diagram shows that o, becomes negligible
at depths less than one half-contact zone (a) and o, diminishes significantly in less than
3 half zones. Because of this, it is reasonable to assume that displacements beyond a
very limited region are negligible in the strain energy calculation of the contact problem.

A number of simplifying assumptions will be made for this study:

I. As discussed above, displacements beyond a limited region are negligible in strain
energy calculations.

2. The foundation is an elastic isotropic material. The cylinder (roller) is rigid.




Figure 1.

Roller-foundation assembly

—

Figure 2.

Contact zone cross section




3. Deformations normal to the cross-section are negligible, hence a condition of plane
strain exists.

4. The roller is subjected to a vertical distributed load.

n

The roller-foundation contact is frictionless.

An important restriction on the minimization problem will be that one body will be
prohibited from penetrating into the other bodv. This mayv seem like an obvious re-
striction, however a method of mathematically stating this restriction must be discussed.
Figure 4 shows the deformed and undeformed contact zone. Let & represent the de-
flection of the roller due to an external force and v(xy) represent the vertical deflection
of the foundation at any point (xy). At the point of Contact A, the condition of no

interference can be expressed as.

v(0.0) =0

At point B. this condition can be stated as,
V(irsin8,0) =0 — r(l —cos8)

The latter condition can be specified at as many points as necessary to define this re-

striction.

C. NUMERICAL OPTIMIZATION
1. Optimization Fundamentals

Before developing the models to be used in this study, one final area must be
discussed. Once the total potential energy has been calculated, a method of minimizing
it to find the equilibrium position must be emploved. A study of the numerical opti-
mization technique to be used is required.

The technique being used in this study relies heavily on the methods of design
optimization. Design optimization is the utilization of mathematical techniques to
minimize or maximize a particular value to obtain an optimum solution. The method
is ideally suited for design. A given design task mayv have an infinite number of sol-
utions. However, finding the best solution is a matter of the designer’s experience and
intuition. In the absence of significant experience in a particular field, finding this sol-
ution may reduce to examining a range of possible solutions by trial and error. Opti-
mization routines can be utilized to find this solution mathematically.

Optimization problems can be constrained or unconstrained. For example, 1t

may be desired to determine the minimum of the parabola, F(x) = (x — 5)* + 2. As seen
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in Figure 3, the minimum is clearly identified at point A. This is an example of an un-

constrained problem. A constrained counterpart of this problem is:

Minimuze: F(x)

Subject to: Flx} = .Sx + 4

As seen in Figure 6, the munimum of the constrained problem is at point B. This 1s a
simple illustration of constrained minimization. The contact problem is a constrained

muinimization problem.

Figure 4. Deformed contact zone
The value to be minimized or maximized is referred to as the objective function.
The parameters to be determined are referred to as design vanables. The optimization
process is an iterative one. The objective function is evaluated. The design vanables
are varied thus obtaining a new objective function. If the difference is within a certain
tolerance or meets a certain convergence criteria, the optimum has been obtained. If it

is out of tolerance, the cycle repeats.
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Figure 6. Constrained minimization




2. Augmented Lagrange Multiplier Method
The contact problem belongs in the class of constrained problems. There are
several technigques of solving constrained problems. The technique used in this study
belongs to a class of solution techniques known as sequenual unconstrained minimiza-
tion techniques (SUMT). This class of techniques is designed for the general nonlinear
problem. The fundamental concept behind this approach is that a constrained problem
is transformed into an unconstrained problem and the objective function i1s minimized
using an unconstrained minimuzation technique. This transformation is accomplished
by assessing a penalty to the objective function for constraint violations. For example,
if the design variables are varied in such a way as to enter the region where a constraint
1s violated (i.e.. the infeasible region), the objective function would be assessed a penalty
(t.e.. increased). Thus, in order to minimize the objective function, the design variables
remain within the region where no constraints are violated (i.c., the feasible region).
[Ref. 6: pp. 121-123]
There are a number of methods within this class of techniques. They essentially
differ in the wav in which penalties are assessed. The technique used in this study is the
augmented Lagrange multiplier (AL M) method.

Given the constrained inequalitv optimization problem:;

Minimize: F(.Y)
Subject to: g(\)<0.i=1.2....n

The Augmented Lagrangian is defined as,

AKX, 2p) = FO + ) (aLgdX) + 571+ plgd X) + 57
i=|

where,

X = vector containing the design variables

+, = Lagrange multipliers

p =penalty parameter

- =slack variables which convert inequality constraints to equality con-
straints




The first two terms of .{(.X, 4.p) represent the Lagrangian. From the method of
Lagrange mulupliers, it is known that munimization of the L.agrangian represents opti-
mality. Like simple problems where 4 is simplv an additional unknown to obtain, in the
ALM method # is unknown. Hence, a mathematical routine based on constraint values
is used to select and modifv 4 for successive iterations. [Ref. 6: pp. 140-147] [nitial
selection of this term can have a significant impact of the problem’s convergence.

As discussed above, a penalty is assessed to the objective tunction for constraint
violations. This feature is apparent by examining the last term. A\ constraint violation
results in a positive value for g(.\) thus resulting 1n an increase in 4. The value of p is
a scaling term which 1s sequentially increased throughout optimization. This ensures
that there is a balance between convergence and numerical conditioning. If p remains
small, convergence may occur with major constraint violations. If p remains large.
constraints will be satisfied at the expense of an ill-conditioned problem [Ref. ™ p.
169]. As with the Lagrange term, selection of this term has a significant impact on the
outcome of the problem.

3. Optimizer and One-Dimensional Search

Thus far. a procedure has been defined which has transformed a constrained
minimiZzation problem into an unconstrained one. This level of the optimization process
is referred to as the optimization strategy. The formulation of the modified objective
function via the augmented Lagrange multiplier method represents a key portion of the
optimuzation process. However, there are additional parts of this process that require
comment.

With the modified objective function and a procedure for assessing penalties in
place, a procedure for minimizing the objective function must be defined. This portion
of the process is carried out by the ‘optimizer.” The optimizer's function is to svstem-
atically alter the design variables in a manner that reduces the objective function rapidiy.
If X represents a vector containing the design variables, the following process is used bv

the optimizer to alter X

X=X, +kS;

where,
i = current iteration number
S = search vector

k = scalar representing distance traveled in direction S
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In general, two processes must be accomplished to find the optimum. First, the search
direction $ must be determuined by a svstematic process. An example of this phase is the
steepest descent method where the direction of steepest gradient is chosen. Second, the
scalar & must be determuined such that the objective function is minimized as much as
possible in the search direction of the current iteration. The latter phase is referred to
as one-dimensional search. [Ref. 6: pp. 10-12]

The optinuzer used in this study is the vanable metric method. Due to the
complexity of this method. a discussion of their formulation is omitted. A detailed ac-
count 1s avatlable in Vanderplaats [Ref. 6: pp. 9Y2-93]. The one-dimensional search
routine used in this study is the golden section method with polynomial interpolation.
The one-dimensional search portion of the process merely represents a svstematic and
cthicient method of finding the minimum in the chosen search direction. A detailed ac-
count of this approach is again available in Vanderplaats [Ref. 6: pp. 26-49].

4. Convergence

The final point to be discussed relevant to optimization fundamentals is that of
convergence. Convergence criteria are utilized to wdentifv the optimum solution and
termunate calculations. There are a number of convergence criteria that can be utilized.
The most obvious is absolute convergence where the objective functions from two suc-
cessive iterations are compared. If the difference between the values is within some
prescribed limit. optimization is terminated. A second method signifving optimality for
unconstrained problems is calculation of the gradient with respect to the design vanable
vector .Y, If this value is approximately zero, optimality has been achieved. This method
15 called the Kuhn-Tucker conditions for unconstrained minimization. Kuhn-Tucker
conditions are more involved for constrained problems. [Ref. 6: pp. 100-101]

The Automated Design Svnthesis (ADS) Svstem used in this study uses both
these termination criteria as well as relative convergence. Relative convergence is similar
to absolute convergence except normalized versions of the difference between successive
iterations is calculated. Again, if a specified tolerance is achieved, optimuzation is ter-

nunated.
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IlI. APPROXIMATE SOLUTION TECHNIQUES

A. RAYLEIGH-RITZ APPROACH
I. Background

The Ravleigh-Ritz method is a method of utilizing the theory of minimum po-
tential energy to solve a given problem. The fundamental concept behind this method
is that a trial function that represents the deformation field is chosen in terms of un-
Known constants. Second. the svstem’s total potental energy is calculated in terms of
the trial function. Since the total potential is @ minimum at equilibrium. minimization
enables determination of the unknown constants. The total potential is minimized by
ditferentiating with respect to the unknown constants and equating to zero. The result
1s 'n" equations and 'n” unknowns, the trial function constants. [Ref. 12: pp. 333-336 ]

The only requirement of the Ravleigh-Ritz method is that the trial function is
Kinematically admissible. A kinematically admissible solution is one that satisfies the
geometric boundary conditions of the system (i.e., deflection and slope). Other require-
ments need not be satisfied. As an example, consider a simply supported beam of length
L with the origin at the left end of the beam. A Kinematicallv adnussible soluticn to
describe the beam’s one dimensional deformation from vertical loading in the v direction
is,

y(x) = a, sin{ Ll'j—)

where g, represents the coefficient to be determined.

Deflection boundary conditiorns at x =0 and x = L have been satisfied. Obviously, an
increased number of terms in the trial function will vield a far more accurate solution.
A Fourier sine series would be a reasonable selection in this case.

Although the Rayleigh-Ritz method does not stipulate numerous requirements
on the trial function, sensible choices of trial functions will increase solution accuracy
significantly. For example, consider the same simply supported beam with the origin

now at the center. A kinematically admissible function is,

Qnx

L

yx) = a, sin( ).
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Naturally however, due to the placement of the origin in this problem, an even function
1s a much for sensible selection for a trial function. A more appropriate selection would
be,
3(x) = a, cos( —:LL ).
The latter point concerning sensible selection of the trial function will be discussed in
detail throughout this study.
2. Application of the Rayleigh-Ritz Method to the Contact Problem.

A brief overview of the method to be developed is in order. Application of the
Rayvleigh-Ritz method necessitates the selection of the appropriate trial function in terms
of unknown coethcients. A discussion of the physical nature of this problem as well as
the desired features of the trial solution 1s required.

The theory of elasticity relationships will be applied using the trial function to
obtain the svstem's strain energy in terms of unknown coeflicients. The svstem'’s total
potential energy will then be minimized utilizing the optimization techniques discussed
in Chapter II. The design vanables are the unknown tnal function coefficients. With
the coetlicients determined, the displacement is known for all points enabling the stress
to be determined throughout the bodyv. Figure 7 i1s a flow chart of the procedure to be
utilized. The post-processing procedure shown is simply the calculation of the stresses
using the now determined coeflicients.

3. Trial Function Selection

In order to choose an appropnate trial function, it is necessary to have an
understanding of the physical phenomena to be modeled. Consider the roller-foundation
svstem shown in Figure 1. Two trial functions are needed to model horizontal and ver-
tical deformation. There are a number of important characteristics that should be in-

herent within the trial functions. These are outlined below:

I. As seen in Figure 3, o, and o, are equal and compressive at the point of contact.
Additionally, o, decays more rapidly than o, as distance from the contact point in-
creases.

!J

Taking the origin at the point of contact as shown in Figure 2, the u-deformation
takes the form of an odd function.

The v-deformation takes the form of an even function (i.e. svmmetric about the
origin and greatest at the origin).

(o)

4. To sausfv the Ravleigh-Ritz method requirements, the boundary conditions must
be satisfied. In this case, this requires u and v deformation to be zero at the far
boundaries.
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5. The characteristics outlined in item 4 satisfv the requirements of this method.

However, since this study will be a stress analvsis, 1t 1s also desired that the stresses
also reflect the physical phenomena. Since ¢, and o, are functions of ¢, and ¢,. ¢,
and ¢, should also exhibit certain characteristics. Referring to Figure 8 for dimen-
sions and the coordinate system. 1t 1s desired that ¢, and ¢, equal zero at x=1L 2 and
v=H. This will ensure that stresses are zero at the boundaries. To satisfyv the re-
quircments of item 1 above, ¢, and ¢, should be equal and negative at the point of
contact and decrease in magnitude as the distance from the point of contact n-
creases.

Figure 8. Contact zone
With the above guidelines in mind, the tnal function can be selected. The tnal

functions chosen for this study are composed of a series of terms of the general form:

u(xy) = a(H — ») % —x) (3.1)
c L d P
Vixy) = bp(H = y) (5~ =x) (3.2)

These expressions were carefully chosen and represent a compromise due to the diffi-
culties of satisfying all boundary conditions with the physical phenomena of this prob-

lem.




From the above expressions, it is immediately obvious that the geometric
boundary conditions at x=L 2 and y=H have been satisfied. This satisfies the re-
quirements of the Rayleigh-Ritz method. In addition. there are a number of important

characteristics that illustrate the advantage of this selection:

1. ¢, and ¢, are negative thus simulating a compressive environment in the vicinity of
the point of contact. The importance of this is obvious. [f normal strains were not
negative, the resulting requirement would be for the coefficient to be less than zero
to simulate compression. [t 1s obvious that this would result in deformations op-
posite to that which was desired by the choiwce of the trial function.

2. This selection for deformation fields has the important characteristic of decreasing
deformation as we move awav from the point of contact. Also note that Jefor-
mation 1s maximum at the point of contact.

tad

The exponents a.b.c. and d can be varied to simulate subsurface stress fields. For
example, if the analytical solution indicates a large v gradient for 4, at x=0, the
objective would be to increase the rate at which ¢, decreases as the distance from
the point of contact increases. This would be easily simulated by raising the value
of a. If this change had a detrimental effect on the behavior of g,. the exponents
of the vertical deformation could be varied to restore the solution.

It is important to note that this selection 1s not without compromise. The most
significant limitation of the trial functions is with regard to the horizontal deformation
w. Phuvsically, it is expected the u(xy) behave as an odd function as discussed above.
However, in this selection of trial function, a positive value of u(xy) exists at the orngin.
This is contrary to the physical behavior of the problem and will lead to some error.
However, considering that the magnitude of this deformation in the elastic range is
small, this error is believed to be limited. Another consequence of this compromise 1s
the existence of non-zero shear strain at x = 0.

Another less severe limitation is a restriction on the order of the exponents in
order to maintain zero stress at the boundaries. Since o, and o, are combinations of ¢,
and ¢,, both normal strains must be zero at the boundaries to ensure that stresses are
zero at these locations. Since the normal strains are first derivatives, this requires that
b and c are at least equal to 2.

[t is worthwhile to note that most of the considerations discussed above far ex-
ceed the requirements stipulated by the Rayleigh-Ritz method. The objective has been
to utilize trial functions that closely match the physical nature of the problem in an ef-
fort to maximize accuracy.

The specific trial functions used in this study are listed below. The horizontal

deformation was assumed to be;




m
u(xy) =Zan(ﬂ (“")( {; —-.\')2 (3.

-

(¥)
149
—

n=

where /1 and L represent the height and length of the bearing foundation, respectively.

Summation was done for n equal ! and 4. The vertical deformation was assumed to be;
\(r,))—zblll .)l—[-—.)“*"). (3.4)

As discussed previously, manipulation of the exponents enables the trial function results
to be matched with the analvtical solution. As will be illustrated in the results. the ex-
ponents chosen in the above functions achieve this goal sufficiently.

With the deformations chosen, the stresses and strains can be calculated for use

in the calculation of the foundation strain energv. These values are shown below:

m

£ = Z 2a,(H - “M)( L - X) (3.3)
n=|
n

6= ) —2b,(H - })(—— (1) (3.6)
i=1

o, = E [(1 —v)e, +v£y] (3.7a)

(1 +v)l —2v)

g, = E
YT+ el = 2v)

Yy

[(1 = v)e, +ve,] (3.7h)

where E and v are Young’'s modulus and Poisson’s ratio, respectively. For the shear

stress and strain,

-gyi= 2 — (d+ may(H =y (L = xy (3.8)
av S

—_— _ - 3 9
L =)~ (4 b H =y (5 =) (3.9)




Cu Av

Yxy = 37 + (3.10)
cy cx

Ty =Gy (3.1

where G is the shear modulus.

Using the above quantities, the strain energy  can be calculated. From the definition

of strain energy applied to a two dimension deformation field,

L
5

H
U =j - J -l— (G& + a8, + Ty Mdidx (3.12)
0

Because of svymmetry about the origin, strain energy can be calculated for half of the
domain and doubled. With strain energy calculated. the total potential for the svstem

can be found from.
NM=0U-F (3.13)

where,
F = external force per unit length applied to the roller

0 = vertical distance traveled by the roller.

The quantity Fo represents the work done by the roller on the bearing foundation.

B. FINITE ELEMENT APPROACH
1. Total Potential Derivation

The finite element method can be employed to solve the contact problem. A
finite element mesh can be constructed to approximate the behavior of an elastic foun-
dation subjected to line contact loading from an rigid roller. The resultant interaction
between the foundation and roller enables the calculation of the foundation’s strain en-
ergyv and the subsequent calculation of the total potential encrgy. By again utlizing the
optimization techniques discussed in Chapter II, the equilibrium position can be deter-
mined. Thus the contact stresses can be calculated throughout the body.

The objective is to derive a means of calculating the total potential of the system

by application of the finite element technique. Total potential energy is defined as,

[
(%4




where,
[ = internal strain energy
F = external force per unit length applied to the roller

o

= vertical distance traveled by the roller.

The strain energy of the svstem can be tound from,

{ = J —l' ‘0’_‘.5‘ + 6}8}. + tx_y.‘/.,\"\,')LIS2
o -

(3.14)

where Q represents the problem domain. This can be expressed in matrix form as.

L-=JA%{£}T{O‘}¢1'Q
2

where,
r
{e}' = {5.( £y 7.\')'}

(0})7 = {0, 0, T}

On the element level,

L'=j L (e}T(o1a02
2

where i represents analysis of the i element.

The stress matrix can be expressed as,
{o} = [D]{¢}

where [ D] represents the material property matrix.

{3.16)

(3.17)

(3.18)




For a condition of plane strain, the stiffness matrix can be expressed as,

I - v 0
(D] = E T
(l‘f‘\')(l—:‘) l-:l'
0 0 3
For a plane stress condition,
| B 0
D)= —'—E3— R | 0
(h—v 9 O L:_‘-

The development of this technique will use linear triangular clements.

3.9

13.19h)

The method.

however. can be applied to any tvpe element. For linear triangular element, the defor-

mations take the following form:
u= Hjuy + Hwuy, + Hyuy
v=H\v, + H,v; + Hyv,

where the shape functions H, are defined as:

H, = [{xy3 — x307) + (2 = 3dx + (x5 — x3 )] TIT

1
Hy =[xy = xiys) + O3 —3dx + (0 — ol 5+

Hy = [(xyy — x0) + 0y — ) + (x — xy)v] 2—‘1-

where,
x,y, = coordinates for node /

A = element area [Ref. 14 ].

The strain matrix can be expressed as,

(3.2D

b 13)




Q3
-— 0
cxX
) A u .
lef=1 0 — (3.2%
Sy iy
cy Cx ]

Substituting equations (3.20) and (3.21) into equation (3.23) vields,

(:[11 5[{2 _ (‘:[{3 1 ru‘l
- 0 - 0 N 0
cx cx cx v,
’.Hl (:H\ (“H} u:
(e} = 0 ~ 0 _ 0 —_— (3.26)
cy Cy A | RN
¢H, cH, c¢H. ¢H, cHy cH; ||
&y  Cx ¢y  cx x|y
L JL 7
In abbreviated notation, equation (3.26) 1s expressed as,

(¥ ]

{e} = [Blid4} 3.
For the linear triangular element. [ B] reduces to,

| Y2 =03 0 -5 0 »=x 0
[B] = 57 0 x—-x 0 x-x 0 x-x (3.28)

X3— X Jr—J)3 Xy —X3 3=V, =X 3y~

Returning to the clement strain energy calculation, equation (3.17),

L'=J % (e} T{0)dQ

Q

and substituting (3.18) into (3.17),

L‘=f % (e} [ D){e}aV. (3.29)
o




Substituting equation (3.27) vields,

U= f < ([BYNTDNBY

Q

C =LA | v
- Q

U= % (B[ DI B4 (3.30)

where 1 = unit depth. Defining the element stiffness matnx [A] ,
(K] = (B[P B].14 (3.31)

then the strain energy per element equals,

U=

t)'.—

{}[K]{d} (3.32)

The element stiffness matrix can be expanded into the global stiffness matrix.
With strain energy now determined, total potential can be determined from equation
(3.14).

2. Optimization and Static Condensation

As with the previously developed model, the augmented Lagrange multiplier
method will be utilized to determine the equilibrium condition via the theorem of muni-
mum potential. The objective function is again the total potential. In this case, how-
ever, the design variables are the nodal deformations, 4, and v. for non-fixed nodes.
Constraint equations are developed in a similar manner as discussed in Chapter Il to
ensure that one body does not violate space occupied by the other.

Since the nodal deformations are represented as the optimization design van-
ables, the number of design variables will equal twice the number of non-fixed nodes.
For a simple mesh, a direct application of this procedure will likely vield accurate results.
However, it is known that the accuracy of the optimization routine declines as the
number of design variables increases. Hence, for complicated finite element meshes,
solution accuracy will be adversely affected by the large number of design variables.

Therefore a procedure must be adopted to eliminate the need for assigning design vari-




ables to nodes where information i1s not necessary for evaluating a solution. This pro-
cedure 1s known as static condensation.

Static condensation has been utilized by References 2 and 3 in an effort to re-
duce computer computational time. The 1dea behind static condensation is the reor-

ganization of the global stiffness matrix. A finite clement problem can be expressed as,

(PP
s
‘2

(R, Jiut = {F; l

where,
[A,] = the stffness matrix
'ut = the deformation vector

= the force vector

|

It 15 desired to reorganize this svstem of equations into the following:

Ki Kiy [fu F
J lz{n} (

Ky K, l“:)

tss
[F¥]
i
—_

The vector i, contains the essential nodes while vector u, contains non-essential nodes.
Essential nodes are those where boundary conditions are applied and nodes that are as-

signed optimuzation design varnables. By matrix manipulation.

tad
9
th

() = — (Ko 17'[Ky By b (

Therefore, the displacement vector can be expressed as,

{ul} ) @y 1_[ } .

P By Sl o TR G [V W 7 O M

LI
tad

where [ represents the identity matrix.

Substituting this equation into the global counterpart of equation (3.32),

(n
~ [Ky,]7'[Ky ]

(7
— [K)7 (K]

|99 )
(99
~1
~—

U= % {4} K, {1,}. (3.

By defining the reduced stiffness matrix [K], the above reduces to,




L
(s

U= () TR ) (3.39

As discussed at the beginning of this section, the ADS design variables are as-
signed as the horizontal and vertical deformations at all non-fixed nodes. With the in-
tegration of static condensation, design variable assignments are further restricted to
non-tixed. non-condensed nodes. The procedure is now in place for calculation of strain
energyv and total potential energyv. In summary. a tlow chart of the solution procedure

utilized in this chapter 1s shown in Figure 9.
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Figure 9. Finite element method applied to contact problem
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IV. RESULTS AND DISCUSSION

A. PROCEDURE VALIDATIONS
I. Rayleigh-Ritz Method Results
[n Chapter [II an approximation technique was developed to solve the contact
problem via the Ravleigh-Ritz method. As discussed, two trial functions that approxi-
mated the deformation field were selected in terms of unknown coefficients. The hori-

zontal deformation was assumed to be;

m
ulxy) = Za,,(H — 3T —I;— —x)

n=\

The vertical deformation was assumed to be;

m
Hoeg) = Zb,,( H— (L - s

n=|

Using the above deformation fields, theory of elasticity relationships and the definition
of strain energy were emploved to obtain an expression for the total potential energyv of
the syvstem shown in Figure 1. Numerical minimization techniques were then emploved
to determine the equilibrium condition and the contact stresses.

To illustrate the application of this method, an isotropic material with the fol-

lowing properties was selected:

E = 200 GPa
v=0.3
G = 76.9 GPa

As stated in Chapter II, this problem was selected for development of this technique
because an analytical solution is available as a result of the work done be Hertz. Itis
desired to use this analytical solution to choose a roller size, load, and problem domain
that can be used to accurately simulates the contact phenomenon.

Contact stresses as well as the size of the surrounding region of influence are

strongly affected by the size of the contact zone. Naturally, as the size of the contact
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¢cone increases, the load is distributed over a larger arca and contact stresses decrease.
The extent of the affected subsurface zone also decreases. From the analvtical solution,
the contact zone size is defined by the externally applied force, the material properties
and the diameter of the roller [ Ref: 13 . Hence for a given material. the roller size and
the external load define the contact szone size and the resulting stresses.

Figure 2 defined the width of the contact zone as 2a. Figure 3 shows the ana-
[vtical solution of the contact problem. This figure shows the decrease of the normal
stresses as a function of half-contact zones (a) awas from the contact point. As shown,
o, decreases more gradually than o, . Therefore the decay of o, 15 the limiting factor in
defining the domain bevond which strain energy contributions are negligible.  From
Figure 3, 1t 1s estimated that the contact phenomenon can be accuratelv modeled by
examining a region equal to approximately five half-zones (3a).

Since a numerical integration technique was used to perform the Jdouble inte-
gration required by Equation 3.12, the dimensions were selected tor numerical conven-
ience. Referring to Figure 8, height H and length L were selected as | and 2 meters.
respectivelv. Due to the problem’s symmetry, half the foundation was analvzed. This
cnabled the double integration to be conducted between the limits of 0 and 1. Since the
foundation height H has been set to 1 m, it is desired to have this distance equal to 3
contact sones (3a) as described above.

Using the analyvtical solution. a load and roller diameter were selected that cre-
ated a contact zone such that the foundation height H was equal to a distance of 3a.
The only additional restriction was that the resulting contact stresses remained within
the elastic range of the material.  Yield stress was assumed to be 300 MPa. The load

and roller radius combination used in this study are;

Load: 90 MN
' 'Radius: 75 m

The values were obtained using the analvtical solutions found in Reference 13. The
latter dimension is unrealistic. However, as stated above, it is a result of the selection
of base dimensions in the interest of numerical convenience. This model simplv repres-
ents a scaled-up examination of the base material in a small region adjacent to the con-
tact zone.

Comparisons of the approximated contact stresses with the analvtical solution

along the axis of symmetry are shown in Figures 10 and 11. Both figures are normalized
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graphs of the stress distribution. As shown in Figure 3, the maximum stress occurs at
the point of contact. As shown, this stress is equal to 4, and o, at the point of contact.
Figure 10 1s a comparison for o, . This figure shows a stress distribution that closely
approximates the analvtical solution. Figure 11 shows the analvucal and approximate
stress distribution for o,. [t 1s apparent that this method over approximates this stress.
As stated in Chapter 111, one of the benefits of this trial function is the ability to change
the exponents to match analvtical solutions with approximate solutions. A brief expla-
nation of the choice of exponents used in this solution technique follows.

While selecting exponents, it must be understood that o, and ¢, are both func-
tions of horizontal and vertical deformations. Therefore changing the exponent of one
deformation to alter the stress in one direction will influence the bchavior of the other.
In the case of Figure 11, 1t appears that a modification is required. An increase in the
exponent of the v-portion of the horizontal deformation function seems appropriate to
increase the rate at which o, decavs. However, this action will have the undesirable ef-
fect of decreasing the rate of decay of 4,. It is possible to counter by decreasing the
exponents of the vertical deformation. However, as stated in Chapter [l in order to
maintain a zero stress boundarv condition at x=L 2 and v=H the exponents ot all
terms must be greater than or equal to 2. Thus a compromise must be reached. It is
believed that since o, is the dominant term, priority should be placed on ensuring o, is
as close as possible to the analvtical solution. Accordingly, a decision was made to ac-
cept the over estimation of o, as shown in Figure 11. In this case, the estimation of o,
1s conservative.

The contours of the Ravleigh-Ritz solution are shown in Figures 12 through 13.
It has been determined that this method can accurately predict contact stresses resulting
from line contact between a roller and flat plane. Table 1 compares the approximated

contact stresses and the analytical results at the point of contact.

Table 1. RAYLEIGH-RITZ RESULTS AT CONTACT POINT

Current Model Analyvtcal Solution
a, (MPa) 285.6 289.7
a, (MPa) 301.9 289.7
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2. Finite Element Method Results
In Chapter I, an approximation method was developed to solve the contact
problem using the finite element method. A method of calculating a svstem'’s strain en-
ergy and the total potential energy was investigated. In addition, the use of static
condensation to improve optimization efficiency was described. As discussed, the nu-
merical minimization techniques were again utilized to determine the equilibrium posi-
tion. A means of employing these techniques to evaluate the contact phenomenon was
introduced. In this section, a simple contact problem will be investigated to validate the
algorithms used to calculate strain energy and those used to implement static
condensation. With confidence in these algorithms, the more complex roller-foundation
problem will be examined.
a. Two Thin Plates in Contact
The procedure developed was first validated on a simple contact problem

the solution of which was known. In this example, two thin bodies in plane stress were




INCREMENT - .02 @PA

°‘-
2]
-]
>
=
£
- ¢
o P
-
o
°
10 08 98 04 02 0.0 0.2 0.4 0.8 c.8 1.0

X (M

Figure 13. Stress contour of ¢, from Rayleigh-Ritz method

studied. As shown in Figure 16, one body, restrained on one edge and subjected to a
horizontal load, comes in contact with a second body rigidly supported on three sides.
The finite element model developed to solve this problem is composed of 14 linear tri-
angular elements as shown in Figure 17. The objective of the fortran program developed
to solve this problem was to calculate the total potential energy of the svstem using the
finite element technique and th® method of static condensation. With this accomplished,
the equilibrium position can then be found via the augmented Lagrange multiplier
method.

The objective function for this problem is the total potential encrgy,
Equation 3.14. Referring to Figure 16 and 17 the constraints imposed on the system are

expressed as:
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Uy < 0.005 + uy,

where « represents the horizontal deformation of node ..

As shown in Figure 17, seventeen nodes were used to model the svstem.
Each node has been assigned horizontal and vertical deformation variables.  Accord-
ingly, the degree of freedom for this syvstem is twice the number of nodes. As discussed
in Chapter III, static condensation requires the identification of essential nodes and
non-essential nodes. Essential nodes are those nodes where ADS design variables are
assigned and boundary conditions are applied. Referring to Figure 17, node 3 is the
point of load application and must be assigned a design variable. Nodes 8, 9, 11, and
12 are assigned design variables in order to define the constraint cquations described
above. After eliminating all fixed nodes from consideration, nodes 2, 3, and 6 are the

only candidates for condensation. As discussed in Chapter I, the global stiffness ma-
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Figure 15. Strain Contour ¢, from Rayleigh-Ritz method

trix is rearranged according to Equation 3.34. For this problem. the vector containing
g g q g

the non-essential nodal information, u,, is arranged as follows:
T — v, . ¥
(i} ={uy vy us vs ug v}

where u and v, represent the horizontal and vertical deformation of node i, respectively.
Strain energy and total potential energy were calculated according to Equations 3.38 and
3.14. The latter was minimized using the augmented Lagrange multiplier method de-
scribed in Chapter II.

The solution obtained from this simple problem were compared with the
results obtained from Y.W. Kwon and J.E. Akin [ Ref. 15 ] and are shown in Table 2.
The solutions were in agreement. It was concluded that a satisfactory procedure was in

place to solve the more complex roller-foundation problem.
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Table 2. FINITE ELEMENT RESULTS: TWO PLATES IN CONTACT
Load (N\) Deformation Current Model Reference 13
1.0x10¢¢ No Contact No Contact
LoxIee Uy .503x10- .303x10-
U2 .336x107° 319x107
1.0x10° U .702x10-2 .734x10-2
Uy, 201x1072 .235x1072

b. Roller-Foundation Contact Problem

A finite element grid composed of 512 linear triangular elements was con-
structed to model the roller-foundation assembly shown in Figure 1. Because of the
svmmetry of the problem, one-half of the foundation was modeled. A refined mesh was
constructed in the vicinity of the point of contact. The mesh is shown in Figure 18

where the origin represents the point of contact. The domain dimensions are similar to
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Figure 17. Finite element mesh for two plates in contact
those chosen in the Rayleigh-Ritz method discussed in Part A of this chapter. The roller
radius was chosen as 75 meters and the half-domain dimensions are 1.40 x 1.40 meters.
As discussed in Part A, these dimensions represent an analysis of the region immediately
adjacent to the contact zone and are a result of the local nature of the contact problem.
Constraint equations were constructed according to the discussion of

Chapter Il Part B. Boundary conditions were imposed in the following manner:

e Horizontal and vertical deformations were prohibited on the remote mesh bound-
aries (i.e., u(1.40, y) = (1.40, ) = 0 and u(x,1.40) = v(x,1.40) = 0).

e Horizontal deformation was prohibited on the axis of symmetry (i.e., u(0, y) = 0).
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Figure 18. Finite element mesh for roller-foundation problem
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Since the system has 289 nodes, the resulting 378 degrees of freedom ne-
cessitated the utilization of static condensation.  Referring to the contact surface, the
deformation variables that correspond to nodes on this surface are required for con-
straint cquations. The nodes that comprise the other three borders of the domain are
all subject to boundary conditions. Consequently, the interior nodes of the mesh are the
nodes that are candidates for static condensation. In this model, all interior nodes were
condensed. The original svstem was reduced from 578 to 128 degrees of freedom. After
application of the boundary conditions, there were 46 possible deformations, a sufli-
ciently small number of design variables for the optimization algorithm. One additional
design variable was uscd to represent the distance of travel by the roller. This value is
needed to calculate the work done by the roller on the bearing foundation.

As before, Equation 3.38 was used to calculate the system'’s strain energy.
Following calculation and the subsequent nunimization of the total potential energyv, a
post-processing procedure was followed to determine the contact stresses. The output
ot the optimization routine represents the nonzero components of the {u} vector. In
order to calculate stresses throughout the body, the remaining deformations contained
within the condensed vector {u,} must be determined. This vector i1s calculated directly
using Equation 3.35. With deformations known throughout the domain, strains can be
determined by applyving Equation 3.27 to each element. The subsequent application of
Equation 3.18 enables determination of stress for each element.

To illustrate the capability of this method, an isotropic material with the

following properties was chosen:

E = 240 GPa
v=203
G = 92.3 GPa

Load = 90.0 MPa

Figure 19 shows the deformation resulting from the loading. For clarity, the Jefor-
mations have been magnified 100 times their original values. Comparisons of the stress
distributions with the analytical solution along the axis of symmetry are shown in Fig-
ures 20 and 21. These figures are similar to Figures 10 and 11 and represent normalized
versions of contact stresses. As shown in these figures, this method 1s a good approxi-

mation of the stress distribution in the foundation of a loaded roller bearing. If the mesh
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was more refined near the contact zone and the domain extended further, the agreement
between the numerical and analvtical solutions would be better. Figures 22 and 23 rep-
resent normal stress contours of this problem. Figures 24 and 235 show normal strains.
Table 3 shows a comparison of the results of this model and the analvtical solution at

a sclected element in the region of contact.

Table 3. COMPARISON OF STRESSES NEAR THE POINT OF CONTACT

FEM Solution Analyvucal Sol-
ution
o (MPa) at x=0.0137, v=0.0273 281.3 2720
a (MPa) at x=0.0137, v=0.0273 315.7 3138

B. APPLICATION

The preceding section illustrated that the contact problem can be accurately simu-
lated using the methods developed in Chapter III. It is the objective of this section to
show how this approach can be applied to a contact problem in a composite plate sub-
jected to low-velocity impact.

A multi-ply laminate model has been constructed to investigate the response of
composite materials to low velocity impact. It has been found that composite bodies
subject to impact damage commonly fail due to delamination. Sandwich composites are
currently being considered for use as turbine blades. It would be beneficial to acquire
an understanding of the behavior of sandwich materials to impact damage.

In order to accomplish this task, a clamped composite beam similar to the one de-
picted in Figure 26 has been modeled. The beam length is 25 cm. Beam thickness is 2.5
cm. Because of symmetry, half the beam was modeled with 256 bilinear elements. As
shown in Figure 27, the mesh is refined near the point of contact, the origin of the mesh.

The major assumptions of this model are that the beam is in a condition of plane
strain and that the dynamic effect of the :mpact can be neglected. Reference 10 ap-
proximated the loading resu'ting from low velocity impact as a sinusoid. In this study,
the peak load will be examined to study the maximum normal and shear stresses. Ac-
cordingly, the stress distributions obtained from this study will represcnt a ‘snap-shot’
in time of the response of the bodyv at the instant of maximum loading.

The finite element program developed to solve this problem is sufTiciently flexible to

alter the material stiffness matrix [ D] shown in Equation 3.18 during construction of the
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Figure 19. Deformed finite element solution: deformation magnified 100 times
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Figure 26.

Clamped composite beam
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Figure 27. Finite element mesh for clamped beam model

finite clement global stiffness matrix. Therefore by defining the lavup for the lamunate,
the lamina stiffness matrices can be varied from element to element to accurately model
the behavior of the body. This enables a variety of lamunate lavups and lamina thick-
nesses to be studied.

The sandwich matenals used in this study are composed of an isotropic interior
material and orthotropic exterior laminae. Since a condition of plane strain was as-
sumed, the isotropic material stiffness matrix is given by Equation 3.19a. For the
orthotropic exterior laminae, the matenal stiffness matrix is given by Equation 4.1
[Ref. 16].
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E.LE,
E = Young's Modulus in i direction

v = Poisson’s ratio for lateral contraction in j~ direction resulting from louading in

the / direction

The derivation of the total potential energy calculation in Chapter I, Part B was
done using hnear triangular elements.  Since bilinear elements were used 1n this model.
calculation of the element stiffness matrix was more computationally intensive. Indi-
vidual entries of the element stiffness matrix were obtained from Reference 17. Other-
wise, the calculation of total potential energy was identical to the procedure outlined in
Chapter I11.

There were two groups of boundary conditions applied to the problem. Along the
clamped edge, deformation was prohibited. In addition. horizontal deformation was
prohibited along the axis of symmetry. As before, the application of static condensation
requires the identification of essential nodes the information of which s contained within
the i} vector. In addition to the essential nodes associated with the above boundary
conditions, the nodes along the contact surface are needed for the constraint cquations.
All other nodes were condensed out.

To illustrate this application of problem solving, sandwich material with the fol-
lowing properties were studied:

Exterior Laminae

E, = 170 GPa
E,;, = 11.8 GPa
G, = 5.2GPa
v, = 0.33




Isotropic Core

E = 223GPa
G = 084 GPa
v = 0735

The beum was loaded by contact with a 10 cm radius ball. The transmitted force
was 250 N. Some unexpected trends were observed in the equilibrium position deter-
muned by the optimizer. By examining the deformations along the axis of svmmetry, a
graduallv decreasing trend in deformation moving away from the point of contact was
interrupted in lamina of significantly decreased stiffness. It is believed that this difficulty
resulted from an inability of the optimization routine to approximate dJeformations
through regions containing very ditferent orders of strain energv. In spite of these dif-
ficulties. some critical information was obtained from this program. As discussed in the
beginning of this study, one of the greatest difficulties of the contact problem is the de-
termunation of the size of the contact zone. Fortunately, the size of the contact zone can
be readily determined by examuning the output from the constraint equations. By com-
paring the ball radius (r) and the distance between the ball center and the node (r'), it
can be determuned if a node is in contact. This condition is illustrated in Figure 28. The

distance r’ to the 1,, node is given by the equation:

U=, (r=0+v) +xf
If r’ is greater than r, the node is not in contact with the body.

With the extent of the contact zone known, the solution to this problem was ob-
tained by applyving the contact boundary condition to a direct finite element program.
Since the validity of the optimization program was in question, this method was applied
using a 0-90-0 layup similar to one used in a study conducted by Sun and Rechak [Ref.
10]. The solution obtained from the current approach was veryv close to the other re-
sults.

With confidence in the procedure, it was desired to examine the behavior of this
model to various layups. The objective was to illustrate how this solution technique can
be used for meaningful rescarch. The study conducted by Sun and Rechak analyzed
methods of reducing the likelihood of composite failure due to delamination. Of par-
ticular concern is the magnitude of shear stress distribution and tensile stress in the v-

direction, the two predominant causes of delamination failure. Using materials with the
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Figure 28. Determination of nodal contact
properties outlined above, a sandwich composite beam with outer fibers aligned to 0
degrees was first studied. Since the finite element model is composed of 16 lavers. the
beams studied will be described with the number of finite element lavers in parenthesis
following the laver description. For example, a 0(3)-1SO(10)-0(3) beam is composed of
10 isctropic core lavers within 3 lavers of matenal with the fibers oriented at 0 degrees
on the top and bottom of the beam.

Three symmetric lavups of varyving core thickness were initially studied. The beams
have the following designations: 0(3)-1SO(10)-0(3), O()-I1SO(8)-0(4), and
0(5)-1SO(6)-0(5). Figure 29 shows the deformed 0(3)-ISO(10)-0(3) beam with defor-
mations magnified 100 times. Stress contours for this beam are shown in Figures 30,
51, and 32. Figure 30 shows the shear stress contour for the loaded condition. This
stress is of particular concern since delamination, a common failure mode for compos-
ites, 1s commonly initiated by high shear stresses or tensile transverse normal stresses.
As the figure shows, a very high stress gradient is present near the contact zone. As the
distance along the beam increases away from the contact zone, the magnitude of the
gradient decreases until the cross sectional shear stress distnbution becomes parabolic.
The transverse normal stress is also concentrated around the contact zone.

Figures 33, 34, and 35 show the cross sectional shear stress distributions for the

three symmetric beams described above. Three separate cross sections are shown on

-55




N gal T

0.0 as 5.0 7.8 10.0 12.5
HORIZONTAL DISTRNCE FROM PDINT OF CONTACT

VERTICAL DISTANCE FROM POINT OF CONTACT
0.00.5 1.0 1.5 2.0 2.5

Figure 29. Loaded beam: deformation magnified 100 times

each graph, the locations of which are indicated in Figure 27. The vertical dashed lines
on cach graph identifv the lamina interfaces. These figures show that all significant ac-
uvity is confined to the lamina closest to the contact zone. It is also evident that the
maximum shear stress is relatively insensitive to the core thickness. However, as the
thickness of the laver closest to the contact surface increases, the shear stress transition
is more gradual at the interfalg with the core. The result is a reduction in the shear
stress at the interface for layups with thicker exterior lamina. It is also noteworthy that
the maximum shear stress occurs at cross section B vice cross section A.

Figures 36, 37, and 38 are graphs for the transverse normal stress, o, , for the same
three symmetric layups. These graphs show an increase in o, as the thickness of the
exterior layers increases. The increased thickness of these lavers produces a stronger
beam, hence beam deflection and contact zone size are reduced. Accordingly, contact
stresses increase. At cross section C, some tensile transverse stress is evident. As pre-

viously stated, tensile transverse stress is a potential source of delamination. As the
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Figure 30. Stress contour: r,, for clamped beam model

thickness of the exterior laver increases. the maximum value of this stress increases.
However, this stress is always compressive at the interface with the core. By comparing
the magnitudes of the shear and transverse normal stresses at the interface, it would
appear that if delamination was to occur at this interface, it i1s more likelv to be caused
by high shear stresses.

Comparisons of the bending stresses at cross section A are shown in Figures 39, 40,
and 41. These figures show that as the thickness of the exterior laver increases, a non-
linear stress distribution intensifies in the laver closest to the contact surface. This trend
would indicate that beam theory is unsuitable for estimating bending stress through this
lamina. This nonlinear behavior is local to the contact zone. Figure 42 shows the
counterpart for Figure 41 at cross section C. The stress distribution in the contact laver
is approximately linear. Another significant observation can be made by examuning the
bending stress graphs. As the thickness of the exterior layer opposite to the contact

laver increases, the stress distribution within this layer transforms from purely tensile
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Figure 31. Stress contour: o, for clamped beam model

behavior to compressive-tensile behavior. This is significant because a bending crack
initiated by tensile stresses tends to propagate to the core interface and cause delanu-
nation. The presence of compressive stress within this laver will tend to slow the growth
of this crack toward the core.

Thus far svmmetric layups have been studied. To analvze how beams with asym-
metric lavups respond to contact loading, two beams with the following designations
were studied: 0(3)-1SO(6)-0(7) and 0(8)-1SO(6)-0(2). The first designated laver is the
lamina closest to the contact surface. Figures 43 and 44 show the shear stress distrib-
utions for these two lavups. As before, the maximum shear stress is relatively unattected
by the different layups. As was the case for the symmetric beams, a thicker exterior laver
close to the contact zone results in a more gradual transition of shear stress into the
core. The result is a lower shear stress at the interface for the O(8)-1SO(6)-0(2) case.
As seen in Figures 43 and 46. the trends for the transverse normal stress, o, were the

same as those found in the symmetric beams.  Deflection was less for the
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O(8)-1SO(6)-12) case. The resulting smaller contact zone lead to higher contact stresses.
As seen in the svmmetric cases, an increase in the thickness of the laver closest to the
contact zone resulted in an increase in the magnitude of the maximum tensile transverse
stress, seen at cross section C. However, the stress at the laminate interface was alwavs
compressive.

With regard to bending stresses for these lavups, Figures 47 and 48 clearly show the
nonlinear behavior as the contact layer thickness increases. [n addition, the thickness
of the exterior layer opposite to the contact surface shows similar results as the sym-
metric cases. As the thickness of this laver decreases, the beam is more susceptible to a

bending crack that propagates into the interface.
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V. CONCLUSIONS AND RECOMMENDATIONS

This study has developed two methods for approximating contact stresses using the
augmented Lagrange multiplier method. As illustrated in Part A of Chapter IV, these
methods accurately approximate the stresses that result from contact between a cvlinder
and plane surface. This study has also illustrated how this approach can be applied to
understand the behavior of an actual contact problem by examining the response of a

composite plate to low velocity impact.

A. RAYLEIGH-RITZ APPROACH

In the process of developing these methods, a number of comments can be made
regarding the application of the Ravleigh-Ritz method to solving contact stress prob-
lems.

1. The selection of the trial function 1s an extremely challenging process. [fit is de-
sired to determine the deformation in a contact problem. the proper stress field
must be first satisfied. Because of this, the selection of possible trial functions is
limited. For example. when selecting a trial function for the vertical deformation
of the foundation of Figure 1. a suitable selection is given by the following
equation:

vxy) = flx) cos( zrr[y{ )

This equation exhibits the favorable characteristics of maximum deformation at the
contact surface and diminishing deformation as the distance from the contact sur-
face increases. If contact stresses are to be modeled, this trial function is inappro-
priate. Calculation of ¢, 1s as follows:

v T . ny
&=, =~ 3g sin 377 )

This function exhibits zero strain at the point of contact increasing to maximum
strain at the lower boundary.

t9

Since the selection of trial functions is difficult, the task is further impeded byv
complicated geometries. Furthermore, selection of a trial function necessitates that
some knowledge of the deformation field exists. Without a sensible selection of
trial functions, an accurate approximation is unlikely.

3. This method assumes the trial function in the form of an infinite series. Solution
accuracy theoretically should improve with an increased number of terms. How-
ever, precautions must be taken to ensure the solution is numerically stable as the
number of terms increases. Since the strain energy calculations require integration,
there are choices of trial functions that will increase without bound as the number
of terms is increased. This problem can be controlled by normalizing dimensions
or limiting the choice of trial functions.




J4. An increase in accuracy was observed as the number of constraints was increased

B.

and the distance between consecutive constraints was decreased. It 1s believed that
the improved accuracy results from a better definition of the contact surface.

FINITE ELEMENT APPROACH
The results in Chapter I illustrated that this approach of applving the finite ele-

ment method to contact stress analyvsis is effective. A number of comments can be made

regarding this approach to problem solving.

1.

(¥

C.

As tllustrated in the results, this method accurately approximated the isotropic
roller bearing problem. However, some dithiculties were encountered during the
modeling of the multi-ply composite. In this model, smooth trends of decreasing
deformations were often interrupted by spurious deformations or groups of Jefor-
mations. These interruptions occurred within lavers of significantly reduced
stiffness. [t 1s believed that the optimization routine had difficulty approximating
the deformations through these lavers because of their verv small contribution to
strain energy. As stated in the results. the contact boundary conditions were ob-
tained from the optimuzation program and applied to a direct finite element pro-
gram to solve the problem. The above difficulty is recognized as a limitation of this
approach.

This approach is much more flexible for complicated geometries than the
Ravleigh-Ritz approach. In addition. detailed knowledge of the deformation field
1s not needed as required by the Ravleigh-Ritz approach.

The application of static condensation is crucial to the successful implementation
of this method. Every effort should be made to reduce the number of design vari-
ables to improve optimization efficiency.

COMMENTS ON OPTIMIZATION

A number of observations were made regarding the general use of the Automated

Design Svnthesis System and the specific usage of the augmented Lagrange muluplier

method.

1.

to

The global optimum was more likely to be determined when the objective function
was normalized.

For both the Ravleigh-Ritz approach and the finite element approach, the initial
choice of design variables had a significant affect on the possibility of obtaining the
global optimum. For the Ravleigh-Ritz method, initial selections of design vari-
ables can result in largely dissimilar values of strain energy and external work, the
two components of the objective function. [t was determined that convergence was
more likely when optimization commenced with these two terms on the same order
of magnitude. With regard to the finite clement approach, sensible choices of the
initial design variable vector was necessary for convergence to the global optimum.
This was accomplished by intuitive selection of design variables to model the likelv
deformation.

Solution accuracy can be improved by scaling constraint equations. It has been
stated that in some circumstances, some constraints change more rapidly than
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others and can influence the solution excessively while others have little influence
[Ref. 6: p. 136].

4. With regard to the usage of the augmented Lagrange multiplier method, 1t was
frequently necessary to ‘tune’ the optimization algorithm to a specific problem.
This wus done by varving the inital penalty term p and the initial Lagrange multi-
plier term 4. As stated by Vanderplaats, commencing opuimization with a small
value of p should theoretically suffice for most problems [Ref. 6: pp. 137-138].
However, 1t was trequently necessary to select an initial value for p due to conver-
gence to unrealistic solutions.  Simularly |, an initial choice of the Lagrange mult-
plier term can effect the solution. Commencement with a small value is again
recommended. [Ref. 6: p. 141]. This need to "tune’ the problem is a sigmficant
drawback to using this optimization method. The itdeal wayv to overcome this lim-
itation is to first tune the optimization routine using a known solution. With this
accomplished, this approach can be used for meaningful data collection.

D. SANDWICH COMPOSITE MATERIAL STUDY

The behavior of sandwich composite materials to low velocity impact loading was
successfullv investigated by the application of the finite element approach. A number
of observations can be made from examining the results.

I. The maximum shear stress is relatively insensitive to laver thicknesses. However,
as the thickness of the contact laver increases, a reduction of the interface shear
stress 1s observed.

2. Tensile transverse normal stresses exist at some cross sections awav from the con-
tact zone. However, this stress 1s alwavs compressive at the interface. Compressive
transverse stresses increase in beams with smaller cores due to reduced deflection
and contact zone size.

[OF]

As the thickness of the laver closest to the contact zone increases, a nonlinear dis-
tribution of bending stress within this laver intensifies. This phenomenon 1s local-
ized to the region of contact.

4. As the thickness of the layer opposite to the contact zone increases, bending crack
propagation toward the core s less likely due to increased compressive bending
stresses within the layer.
E. RECOMMENDATIONS FOR FURTHER STUDY

The methods developed in this study offer a basis from which additional rescarch
can grow. A reasonable direction is the relaxation of some of the assumptions made n
Chapter Il Part B. For example, relaxation of the rigid roller assumption and the
frictionless surface assumption would provide challenging research. Models with com-
plex geometry could be created. For example, a model of a pin loaded bolt connection
could be created with rigid or non-rigid pins. Implementation of these changes would

provide a versatile and highly applicable model for contact stress analysis.
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